If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-7x-89=0
a = 1; b = -7; c = -89;
Δ = b2-4ac
Δ = -72-4·1·(-89)
Δ = 405
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{405}=\sqrt{81*5}=\sqrt{81}*\sqrt{5}=9\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-9\sqrt{5}}{2*1}=\frac{7-9\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+9\sqrt{5}}{2*1}=\frac{7+9\sqrt{5}}{2} $
| 3x=-x-(6-2x) | | x-408=503 | | 5y+16=180 | | 6−6x^2−3x=0 | | -5t^2+14t=8 | | 3/10=(b+7)/20 | | 6−6x2−3x=0 | | X+11+x+3x+140=180° | | 2k-10=10 | | 9a+2a=-17 | | 5(x-3)/8=2=7 | | -y+179=122 | | 5(2n-3)=4(-3n+2 | | 5(x+1)=4/6=4 | | 25=-3c+4c | | 110+y+7=180 | | 273=215-w | | x+3=5x+0 | | 11i=11 | | 5(x+1)/4=-2 | | -3(1+n)-2n=6(n-2) | | 20x^2-157x+78=0 | | x+3=6x+0 | | 260+3y-17=180 | | 31=-4+6(n+2) | | x+3=7x+0 | | 8z=-424 | | 1x+9=3x+4 | | 8(4-5k)=-30 | | 2(4-3x)+8x=2(x+4) | | 6m-3=5-(m+39.5) | | 4x^2-100x+50=0 |